supernova
Introduction
Sections in this article:
Type II Supernovas
Type II supernovas involve massive stars that burn their gases out within a few million years. If the star is massive enough, it will continue to undergo nucleosynthesis after the core has turned to helium and then to carbon. Heavier elements such as phosphorus, aluminum, and sulfur are created in shorter and shorter periods of time until silicon results. It takes less than a day for the silicon to fuse into iron; the iron core gets hotter and hotter and in less than a second the core collapses. Electrons are forced into the nuclei of their atoms, forming neutrons and neutrinos, and the star explodes, throwing as much as 90% of its material into space at speeds exceeding 18,630 mi (30,000 km) per sec. After the supernova explosion, there remains a small, hot neutron star, possibly visible as a pulsar, surrounded by an expanding cloud, such as that seen in the Crab Nebula.
Type I Supernovas
In the 1930s Fritz Zwicky, Walter Baade, and Rudolph Minkowski developed several models of supernova events. In a star about to become a Type I supernova, the star's hydrogen is exhausted, and the star's gravity pulling inward overcomes the forces of its thermonuclear fires pushing the material outward. As the core begins to contract, the remaining hydrogen ignites in a shell, swelling the star into a giant and beginning the process of helium burning. Eventually the star is left with a still contracting core of carbon and oxygen. If the star, now a white dwarf, has a nearby stellar companion, it will begin to pull matter from the companion. In many stars the excess matter is blown off periodically as a nova; if it is not, the star continues to get more and more massive until the matter in the core begins to contract again. When the star gets so massive that it passes Chandrasekhar's limit (1.44 times the sun's mass), it collapses very quickly and all of its matter explodes.
Distribution of Supernovas
At peak intensity, a supernova can shine as brightly as the entire galaxy in which it occurs. Novas are less spectacular and more common; they increase in brightness only by a few thousand times, and several occur in our galaxy every year. Supernovas can occur in that small percentage of stars having a mass greater than 8 to 10 times the mass of the sun and perhaps in certain binary stars.
At least seven supernovas have been observed to have occurred in our galaxy in the last two millennia, including one in Taurus described by Arab, Chinese, and Japanese astronomers in 1054; Tycho's star in Cassiopeia, observed by Tycho Brahe and others in 1572; and the supernova of 1604 that Kepler and others observed. In 1885 the first extragalactic supernova was discovered telescopically in the Andromeda Galaxy; some 700 others have been observed since. In 1987 Supernova 1987A appeared in the Large Magellanic Cloud. It was the first supernova visible to the unaided eye since 1604, and its eruption marked the first time that neutrinos were detected on earth from such an event (see neutrino astronomy).
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General
